澳门金沙赌场网止-澳门金沙城中心博客

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐庄闲赢负表| 职业赌百家乐官网技巧| 百家乐官网专业赌博| 喜力百家乐官网的玩法技巧和规则| 摩纳哥百家乐娱乐城| 百家乐官网伴侣破解版| 百家乐庄家胜率| 大发888bet游戏平台| 百家乐官网赌假的工具| 单机百家乐棋牌| 改则县| 打百家乐的介绍| 百家乐官网模拟分析程序| 百家乐制胜软件| 百家乐官网高手看百家乐官网| 百家乐棋牌游戏开发| 百家乐官网程序软件| 百家乐九| 贵族娱乐城| 百家乐一邱大师打法| 电脑百家乐官网的玩法技巧和规则 | 属狗与属猪能做生意吗| 大连娱网棋牌步步为赢| 澳门百家乐现场游戏| 线上百家乐官网信誉| 8大胜| 威尼斯人娱乐城博彩网| 菲律宾百家乐试玩| 金城百家乐官网买卖路| 百家乐官网3宜3忌| 大发888官网 df888ylcxz46| 蓝盾百家乐平台租用| 百家乐官网押注方法| 环球棋牌评测网| 宝龙百家乐的玩法技巧和规则 | 大发888老虎机技巧| 寅午戌 24山图| 好运来百家乐官网现金网| 免费百家乐倍投| 百家乐3带厂家地址| 一起pk棋牌游戏下载|