澳门金沙赌场网止-澳门金沙城中心博客

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

免费百家乐官网规则| 百家乐游戏怎样玩| 菲律宾云顶国际| 巴黎人百家乐官网的玩法技巧和规则 | 罗浮宫百家乐官网的玩法技巧和规则| 金木棉百家乐的玩法技巧和规则| 百家乐庄多还是闲多| 玩百家乐技巧巧| 百家乐官网什么叫缆| 新时代百家乐官网娱乐城| 赌球网址| 百家乐官网游戏机在哪有| 百家乐官网怎样赢| 瑞丰国际娱乐场| 百家乐官网新庄| 大发888娱乐场下载英皇国际| 百家乐官网如何打轮盘| 易胜博娱乐场| 百家乐走势图备用网站| 德州扑克 在线| 百家乐官网开户百家乐官网技巧| 银泰百家乐龙虎斗| 汇丰娱乐城| 在车库做生意风水| 大发888娱乐城充值| 百家乐官网画面方法| 大发888下载 df888gfxzylc8 | 德州扑克玩法说明| 百家乐开户送彩网址| 百家乐官网游戏机图片| 百家乐singapore| 长泰县| 百家乐自动投注| 大发888游戏平台寒怕| 如何赢百家乐官网的玩法技巧和规则 | 游艇会百家乐的玩法技巧和规则 | 开心8百家乐现金网| 百家乐官网8点直赢| 百家乐官网技巧微笑心法| 百家乐娱乐真人娱乐| 百家乐官网赌博网址|