澳门金沙赌场网止-澳门金沙城中心博客

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐路单破解软件| 现场百家乐官网平台源码| 真人百家乐赌博技巧| 澳门百家乐官网官方网站破解百家乐官网技巧 | 网上现金百家乐| 赌博拘留几天| 百家乐遥控牌靴| 赌博投注| 百家乐视频二人雀神| 百家乐官网体育博彩| 御匾会百家乐官网娱乐城| 百家乐菲律宾| 盛世国际娱乐城| 澳门百家乐官网单注下注| 百家乐牌九| 山阳县| 百家乐黄金城游戏大厅| 新泰市| 百家乐皇室百家乐| 代理百家乐官网最多占成| 百家乐赌博娱乐城大全| 百家乐官网电投| 大发888真钱娱乐| 百家乐官网投注方向| 大发888被查封| 百家乐官网新注册送彩金| 利好线上娱乐| 百家乐庄闲必赢| 金豪娱乐| 威尼斯人娱乐城好吗| 百家乐官网代理博彩正网| 在线百家乐安卓| 澳门百家乐官网免费开户| bet365.com| 至尊百家乐规则| E乐博| 威尼斯人娱乐城信誉怎么样| 百家乐15人桌布| 做生意家里摆什么招财| 新宝百家乐官网网址| 老虎机干扰器|