澳门金沙赌场网止-澳门金沙城中心博客

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇-Stein variational gradient descent with local approximations
作者:     供圖:     供圖:     日期:2021-12-13     來(lái)源:    

講座主題:Stein variational gradient descent with local approximations

專家姓名:閆亮

工作單位:東南大學(xué)

講座時(shí)間:2021年12月16日 9:00-10:00

講座地點(diǎn):騰訊會(huì)議,會(huì)議ID:403792057

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

Bayesian computation plays an important role in modern machine learning and statistics to reason about uncertainty. A key computational challenge in Bayesian inference is to develop efficient techniques to approximate, or draw samples from posterior distributions. Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for this issue. However, the vanilla SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable or too expensive to evaluate. In this talk, we explore one way to address this challenge by the construction of a local surrogate for the target distribution in which the gradient can be obtained in a much more computationally feasible manner. More specifically, we approximate the forward model using a deep neural network (DNN) which is trained on a carefully chosen training set, which also determines the quality of the surrogate. To this end, we propose a general adaptation procedure to refine the local approximation online without destroying the convergence of the resulting SVGD. This significantly reduces the computational cost of SVGD and leads to a suite of algorithms that are straightforward to implement. The new algorithm is illustrated on a set of challenging Bayesian inverse problems, and numerical experiments demonstrate a clear improvement in performance and applicability of standard SVGD.

主講人介紹:

閆亮,東南大學(xué)副教授、博士生導(dǎo)師。主要從事不確定性量化、貝葉斯反問(wèn)題理論與算法的研究。2018年入選東南大學(xué)“至善青年學(xué)者”(A層次)支持計(jì)劃,2017年入選江蘇省高校“青藍(lán)工程”優(yōu)秀青年骨干教師培養(yǎng)對(duì)象。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目?jī)身?xiàng),主持完成國(guó)家自然科學(xué)基金青年項(xiàng)目和江蘇省自然科學(xué)基金青年項(xiàng)目各一項(xiàng)。已經(jīng)在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等國(guó)內(nèi)外刊物上發(fā)表30多篇學(xué)術(shù)論文.

皇冠走地网| 六合彩报码室| 大玩家百家乐的玩法技巧和规则 | 永利高足球网| 百家乐官网隔一数打法| 海立方百家乐客户端| 通江县| 玩百家乐的高手| 真人百家乐官网蓝盾娱乐平台| 百家乐玩法秘决| 定西市| 尊龙百家乐娱乐城| 百家乐官网必胜法技巧| 澳门百家乐群代理| 百家乐官网筹码| 浩博真人娱乐| 百家乐代理条件| 百家乐官网赢钱面面观| 新全讯网网址g2vvv| 百家乐官网群到shozo网| 和平区| 威尼斯人娱乐网代理| 百家乐视频下栽| 真人百家乐官网试玩账号| 德州扑克教程| 百家乐走势图备用网站| 百家乐官网是否能赢| 华池县| 大发888 备用6222.co| 百家乐真人娱乐城陈小春| 百家乐官网多少钱| 百家乐官网注册就送| 六合彩网| 狮威百家乐的玩法技巧和规则| 海王星开户| 全讯网纯净版| 保时捷百家乐娱乐城| 百家乐官网顶尖高手| 足球百家乐官网投注计算| 百家乐官网案件讯问| 怀集县|