澳门金沙赌场网止-澳门金沙城中心博客

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術報告-Vertex stabilizers of symmetric graphs and their applications
作者:     供圖:     供圖:     日期:2020-12-11     來源:    

講座主題:Vertex stabilizers of symmetric graphs and their applications

主講人: 郭松濤

工作單位:河南科技大學

活動時間:2020年12月13日 15:40-16:30

講座地點:騰訊會議,會議ID:850 153 808

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

A graph, with a group of its automorphism, is said to be transitive, if G is transitive on arcs but not on arcs of the graph. Let X be a connected transitive graph, and let be the vertex stabilizer of a vertex in . In 1980, Djokovic and Miller gave the exact structure of for the cubic case, and Weiss and Potocnik gave such structure for the tetravalent case. In this talk, we will discuss the structure of for the pentavalent and hexavalent cases, and give the idea of the main proof. Also, with the similar method, we can get such structures for the valency 7 and 8.

   transitive graph is also simply called symmetric graph or arc-transitive graph. A graph is called edge-primitive if the full automorphism group of the graph is primitive on edges. The structure of the vertex stabilizer plays an important role in the study of transitive graph. As we all known that except for a star graph, all the edge-primitive graphs are arc-transitive. We will introduce the method about how to use the structure of to determine the edge-primitive graphs with small valencies, and also some symmetric graphs of certain order and valency.

主講人介紹:

郭松濤,副教授。2009年廣西大學碩士畢業,導師徐尚進教授。2012年北京交通大學博士畢業,導師馮衍全教授。現就職于河南科技大學-數學與統計學院,從事代數圖論、置換群論和組合網絡等方面的研究。主持國家自然科學青年基金1項,河南科技大學青年學術技術帶頭人培育項目1項。在J.Combin.Theory B, J. Algebraic Combin., Electronic J. Combin., Discrete Math., Algebra Colloquium, Acta Math. Appl. Sinica English Series等國內外著名期刊上發表論文30余篇.

皇冠网站| 百家乐庄家闲| 百家乐官网娱乐城官方网| 百家乐的路单怎样看| 佳豪国际| 百家乐赌博是否违法| 大嘴棋牌手机版| 百家乐官网网| 宣恩县| 网上百家乐官网赌钱| 圆梦城百家乐娱乐城| 澳门百家乐官网玩| 大发888在线娱乐城21点| 百家乐官网如何盈利| 淘金盈娱乐| 网上百家乐是叫九五至尊么| 百家乐加牌规| 百家乐官网赌场网| 北京德州扑克比赛| 八卦24山| 百家乐官网合理的投注法| 百家乐娱乐城代理| 百家乐官网开户代理| 正规百家乐官网平注法口诀| 长乐坊娱乐城| 百家乐正网| 百家乐视频游戏官网| 百家乐官网只打闲打法| 香港六合彩官方| 百家乐号破| 真人百家乐官网赌场娱乐网规则| 真钱棋牌游戏| 百家乐赌场赌场平台| 百家乐官网群博乐吧blb8v| 峨边| 金龙棋牌下载| 7人百家乐桌子| 华盛顿百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城官方地址| 百家乐实战玩法| 网络百家乐官网玩法|